1. Prove that $B\left(\mathbb{C}^{n}, \mathbb{C}\right)$ is isomorphic (as a normed space) to \mathbb{C}^{n}. To be more precise, you need to show that there exists a map

$$
\rho: B\left(\mathbb{C}^{n}, \mathbb{C}\right) \longrightarrow \mathbb{C}^{n}
$$

such that
i) ρ is bijective (both injective and surjective)
ii) ρ is linear. In other words, for all $x, y \in B\left(\mathbb{C}^{n}, \mathbb{C}\right)$ and $\lambda \in \mathbb{C}$, we have

$$
\rho(x+y)=\rho(x)+\rho(y) \text { and } \rho(\lambda x)=\lambda \rho(x) .
$$

iii) ρ preserves the norm structure. In other words, for all $x \in B\left(\mathbb{C}^{n}, \mathbb{C}\right)$, we have $\|\rho(x)\|=$ $\|x\|$.
2. Assuming we have the following fact (which can be derived from the Hahn-Banach Theorem):
${ }^{66}$ Let X be a Banach space. Then for any $x \in X$ with $x \neq 0$, there exists a bounded linear functional on f on X (in other words, $f \in B(X, \mathbb{C})$) such that $f(x) \neq 0$.

Consider the following map

$$
\rho: X \longrightarrow X^{* *}, x \mapsto \rho(x) \text { with } \rho(x)(f)=f(x) \forall f \in X^{*} .
$$

Prove that the map ρ is linear and injective.

Solution:

1.

Proof. Let e_{1}, \cdots, e_{n} be an orthogonal basis for \mathbb{C}^{n}. Define

$$
\rho: B\left(\mathbb{C}^{n}, \mathbb{C}\right) \longrightarrow \mathbb{C}^{n}, x \mapsto\left(x\left(e_{1}\right), \cdots, x\left(e_{n}\right)\right)
$$

It is not hard to check that ρ is bijective and linear.
To check that ρ preserve the norm, just need to apply the classical Cauchy-Schwarz inequality.
2.

Proof. Easy to check that ρ is linear.
Now we try to show that ρ is injective. Suppose not, then there exists $x, y \in X$, such that $\rho(x)=\rho(y)$. In other words, for any $f \in X^{*}$, we have

$$
\rho(x)(f)=\rho(y)(f)
$$

It follows that

$$
f(x)=f(y) \quad \forall f \in X^{*} .
$$

In other words,

$$
f(x-y)=0 \quad \forall f \in X^{*},
$$

which contradicts the fact in the statement.

